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Abstract. I consider theN -step transfer matrixT for a general block Hamiltonian, with
eigenvalue equation

Lnψn+1 +Hnψn + L†n−1ψn−1 = Eψn
whereHn andLn are matrices, and provide its explicit representation in terms of blocks of
the resolvent of the Hamiltonian matrix for the system of lengthN with boundary conditions
ψ0 = ψN+1 = 0. I then introduce the related Hamiltonian for the caseψ0 = z−1ψN and
ψN+1 = zψ1, and provide an exact relation between the trace of its resolvent and Tr(T − z)−1,
together with an identity of Thouless type connecting Tr(log |T |) with the Hamiltonian
eigenvalues forz = eiφ . The results are then extended toT †T by showing that it is itself
a transfer matrix. Besides being of mathematical interest, the identities should be useful for an
analytical approach in the study of spectral properties of a physically relevant class of transfer
matrices.

1. Introduction

Several discretized models are described by a Hamiltonian matrixH with tridiagonal
structure made of blocksHn = H

†
n along the main diagonal, and blocksLn, L

†
n, with

detLn 6= 0, respectively in the adjacent upper and lower diagonals, the blocks having size
M ×M. The diagonal matrices may describe the inner dynamics of a sequence of finite
subsystems, and the off-diagonal matrices are the couplings between neighbouring ones.

An important and extensively studied example is Anderson’s model for electronic
transport in aD-dimensional lattice with random potential, which forD = 3 exhibits
a metal–insulator transition [1]. The single matricesHn are random Hamiltonians for
the isolated slices of dimensionD − 1 and, in the simplest case, the couplingsLn are
proportional to the unit matrix, as implied by the discretization of the Laplacian. They may
also be complex, in the presence of a magnetic field [2], or random, due to random hopping
amplitudes [3]. Another frequently studied model is the ensemble of band random matrices
[4], whereHn is a member of GOE or GUE andLn are random and lower triangular matrices.
They found applications in quantum chaos [5], one particle mesoscopic transport [6] and the
propagation of two particles in disordered media [7]. The block structure also arises in the
Fourier representation of the Floquet HamiltonianHt = H0+ V †eiωt + V e−iωt − i∂t , giving
Hn = H0+ nω andL = V . Block Hamiltonians have also been investigated in the context
of matrix models [8], the blocks being rotationally invariant for the methods to apply.
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The eigenvalue equation forH, in block components, is

Lnψn+1+Hnψn + L†n−1ψn−1 = Eψn. (1.1)

One is often interested in asymptotic properties of eigenvectors. A basic tool for this
analysis, which exploits the recursive content of the eigenvalue equation, is the transfer
matrix, connecting pairs of components of the vector(

LNψN+1

ψN

)
= T (E)

(
ψ1

L
†
0ψ0

)
. (1.2)

The transfer matrix has size 2M × 2M and it is convenient to factorize it as follows:

T (E) = TN(E)6N−1TN−1(E)6N−2 · · ·61T1(E)

Tk(E) =
(
E −Hk −I
I 0

)
6k =

(
L−1
k 0

0 L
†
k

)
.

(1.3)

By allowing for complex values of the parameterE, for the single factors and then for the
whole product, one obtains the important symplectic property

T (E∗)†σ2T (E) = σ2 σ2 =
(

0 −I
I 0

)
(1.4)

whereI is the identity matrix of sizeM. Another consequence of the factorized expression
is detT (E) =∏k det[L†kL

−1
k ], which implies| detT (E)| = 1.

General theorems assert that the eigenvaluesta of transfer matrices built with random
factors grow or decrease exponentially withN [9], allowing the definition of characteristic
exponents

γa(E) = lim
N→∞

1

N
log |ta(E)| (1.5)

which, in the case of(T †T )1/2, constitute the Lyapunov spectrum of the model. The
analytical derivation of a Lyapunov spectrum is usually extremely difficult, the alternative
being careful numerical work to cope with exponential instabilities. For 2× 2 matrices
(M = 1), a relevant formula by Herbert and Jones, rediscussed by Thouless and bearing
his name, connects the single Lyapunov exponent to the eigenvalue density of the ensemble
of Jacobi Hamiltonians [10]. However, the density is by no means a simpler problem; an
exception is Lloyd’s model, characterized by diagonal disorder with Cauchy distribution:
in this case the analytical expression ofγ (E) is known [10]. The statistical properties
of the Lyapunov exponent and various generalizations were investigated extensively by
Pendry [11].

One of the rare solvable examples in more than one dimension is given by Isopi
and Newman [12], who studied products of matrices all of whose entries are identically
distributed random variables, and found analytically a ‘triangle law’ for the Lyapunov
spectrum; Cook and Derrida considered the case of randomly sparse matrices [13].
A beautiful statistical theory of transfer matrices, based on few physical contraints, has been
introduced by Mello and others to describe transport properties in disordered multichannel
conductors, obtaining the observed value for universal conductance fluctuations [14]. In
general, however, the transfer matrix is a derived object, which inherits a structure from
the specific recurrence or dynamical equation under examination. Its statistical properties
depend in a complicated way on fluctuating parameters which enter more naturally, for
example, in the characterization of an ensemble of Hamiltonians.

For the class of Hamiltonians we are considering, analytical results are lacking. Many
extensive numerical calculations have been carried out for the Anderson model. It was by
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means of transfer matrices that Kramer and MacKinnon first exhibited the metal–insulator
transition in three dimensions [15], through the different scaling behaviour in the transverse
areaM of the smallest Lyapunov exponent. A recent numerical study by Markos [16]
provides the whole Lyapunov spectrum, which is sensitive to the transition. The Lyapunov
spectrum of band random matrices was obtained numerically by Kottoset al [17], with a
discussion of finite-size corrections.

The aim of this paper is to investigate some general mathematical properties of the
transfer matrixT (E) that arise from the block structure of a single but generic Hamiltonian
matrixH, of sizeNM, corresponding to (1.1) with boundary conditionψ0 = ψN+1 = 0.

In [18] I showed that the eigenvalues of the transfer matrix are most directly related
to those of a matrixH(z) of sizeNM, which in general is not Hermitian and has block
structure

H(z) =


H1 L1 (1/z)I

L
†
1 H2 L2

L
†
2 · · ·

· · · HN−1 LN−1

zI L
†
N−1 HN

 (1.6)

resulting from the eigenvalue equation (1.1) with boundary conditions specified through a
complex parameterz:

LNψN+1 = zψ1 L
†
0ψ0 = 1

z
ψN. (1.7)

The relation is based on the following simple statement, whose proof is straightforward:

A vector (ψ1, ψ2, . . . , ψN) is an eigenvector ofH(z) with eigenvalueE if and
only if (zψ1, ψN) is an eigenvector ofT (E) with eigenvaluez, the components
ψ2, . . . , ψN−1 being linked toψN andLNψN+1 = zψ1 by (1.1).

It implies that the characteristic polynomials ofT (E) andH(z) are proportional, and
eventually leads to the following ‘duality relation’:

det[T (E)− z] = (−z)M det(LN−1 · · ·L1)
−1 det[E −H(z)]. (1.8)

A new proof will be given in section 2, after having derived an explicit representation of the
matrixT (E) in terms of the corner blocksGij , i, j = 1, N , of the resolventG = (H−E)−1

of the Hamiltonian matrixH, for the system of lengthN . The Hamiltonian has block
structure (1.6) with null matrices replacing thez-dependent corner blocks, corresponding to
the boundary requirementψ0 = ψN+1 = 0.

In this paper I note that the derivative in the variablez gives a relation between resolvents

Tr

(
1

T (E)− z
)
= −M

z
+ ∂

∂z
log det[E −H(z)]. (1.9)

The equation also follows from a representation of [T (E) − z]−1 in terms of the corner
blocks of the resolvent̃G = (H(z) − E)−1, to be obtained in section 4. IfH were to
belong to an ensemble, it would provide access to the spectral density ofT (E) by relating
the difficult problem of averaging the resolvent of the transfer matrix, which depends on
the ensemble parameters in a complex way, to the average of a ratio of determinants of the
Hamiltonian itself.

The general discussion forT (E) will be extended in section 5 to cover the relevant
matrix T (E)†T (E), by showing that it is itself the transfer matrix of a tridiagonal block
Hamiltonian, of size 2NM.
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The main results of the paper can be summarized in the following equations:
equation (1.9) or its equivalent (3.6) between traces of resolvents, equations (2.3) and
(4.3) which provide the representation of the transfer matrix in terms of corner blocks of
resolvents, equations (3.5) and (5.4) which generalize Thouless’ relation toM > 1 and relate
Lyapunov exponents to the eigenvalues of the Hamiltonian matrix, the duality relation (5.6)
for ther matrixT †T .

The results described are exact and general. Hopefully, this work should provide
an analytical framework for the difficult task of investigating average spectral properties
of transfer matrices, constructed from an ensemble of Hamiltonians of this type. One
further motivation is the recent interest in non-Hermitian matrices, which have now been
investigated extensively, mainly in the one-dimensional caseM = 1 [19], precisely with
the tridiagonal structure and boundary conditions generalized here. In one dimension, the
eigenvalues are distributed along curves in the complex plane [20] and real eigenvalues
correspond to delocalized eigenvectors [21]. The here established relationship with the
transfer matrix makes non Hermitian matrices an obvious object for investigating localization
properties of eigenvectors. ForM = 1 this was done by Brouweret al [22].

2. The transfer matrix and the resolvent ofH

In this section I obtain a block representation ofT (E) in terms of the corner blocks of the
resolvent ofH. I then prove the duality relation (1.8).

For complexE, let us introduce the resolventG(E) = (H−E)−1. It is a matrix made
of N2 square blocksGij of sizeM × M. The relation [G(E)ij ]† = G(E∗)ji holds. By
definition

L
†
i−1Gi−1,j + (Hi − E)Gi,j + LiGi+1,j = Iδij . (2.1)

By solving the recurrence relations forj = 1 and j = N , one obtains two identities
involving the transfer matrix(

0

GN,1

)
= T (E)

(
G1,1

−I
) ( −I

GN,N

)
= T (E)

(
G1,N

0

)
. (2.2)

They can be joined into a matrix relation, which gives a representation of the transfer matrix
in terms of the corner blocks of the resolvent:

T (E) =
( −I 0

GN,N GN,1

)(
G1,N G1,1

0 −I
)−1

(2.3a)

=
( −G−1

1,N −G−1
1,NG1,1

GN,NG
−1
1,N −GN,1+GN,NG

−1
1,NG1,1

)
. (2.3b)

One checks that the symplectic property (1.4) is identically satisfied. Note that each block
component ofT (E) is a matrix polynomial inE, and is explicitly represented here in terms
of the resolvent of the Hamiltonian. By varying the numberN of factors inT (E), one
obtains a collection of matrix polynomials which follow orthogonality relations that extend
to M > 1 the familiar notion of othogonal polynomials of Jacobi matrices [23].

With the aim of deriving the duality relation, I first prove

detG−1
1,N = det[L1 · · ·LN−1]−1 det[E −H]. (2.4)

Proof. A vector (ψ1, . . . , ψN) is an eigenvector ofH with eigenvalueE if and only if it
solves (1.1) with boundary conditionsψN+1 = ψ0 = 0. These conditions, by equations (1.2)
and (2.3b), are equivalent to the requirement 0= G−1

1,Nψ1. By constructionT (E) is a
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polynomial inE of degreeN with matrix coefficients; then detG−1
1,N is a polynomial inE

of degreeNM and leading term(−1)MEMN det[L−1
N−1 · · ·L−1

1 ]. The polynomials det[E−H]
and det[G−1

1,N ] share all zeros and are therefore proportional by a numerical factor obtained
from comparison of the leading terms. �

I now give a proof of the duality relation (1.8), which is different to that provided
in [18].

Proof. By writing H(z) = H+V (z), whereV (z) is zero everywhere except for the corner
blocksV1,N = (1/z)I andVN,1 = zI , one calculates

det[E −H(z)] = det[E −H] det[I +G(E)V (z)]

= det[E −H] det

(
I + zG1,N (1/z)G1,1

zGN,N I + (1/z)GN,1

)
. (2.5)

On the other hand, by using algebraic properties of determinants, from equation (2.3b) one
obtains

det[T (E)− z] = zM det[G−1
1,N ] det

(
I + zG1,N (1/z)G1,1

zGN,N I + (1/z)GN,1

)
. (2.6)

By taking into account the property (2.4), the duality relation (1.8) follows. �

3. The duality relations

Here I discuss some consequences of the duality relation

det[T (E)− z] = (−z)M det(LN−1 · · ·L1)
−1 det[E −H(z)]. (3.1)

An identity for the inverse transfer matrix is obtained from the adjoint of (3.1), with the aid
of the propertiesT (E∗)† = −σ2T (E)

−1σ2 andH(z∗)† = H(1/z):
det[T (E)−1− z] = (−z)M det(L†N−1 · · ·L†1)−1 det[E −H(1/z)]. (3.2)

The product of the two identities immediately yields an identity which was used in [18] to
study the structure of bands and the dynamics of eigenvalues of the Hermitian Hamiltonians
H(eiϕ):

det
[
T (E)+ T (E)−1− (z+ 1/z)

]
= |det(LN−1 · · ·L1)|−2 det[E −H(z)] det[E −H(1/z)]. (3.3)

A simple general consequence of (3.1) is that, for ImE 6= 0, the transfer matrixT (E) has
no eigenvalues on the unit circle, since the right-hand term of (3.1) never vanishes for a
Hermitian matrix. More generally, this is true forE not in the union of the bandsBk,
k = 1, . . . , NM, each one being defined as the interval of the real axis spanned by the
eigenvalueEk(ϕ) of the Hermitian matrixH(eiφ), asϕ varies in [0, 2π).

From the symplectic property (1.4) it follows that ift is an eigenvalue ofT (E) with
|t | 6= 1, then 1/t∗ is an eigenvalue ofT (E∗). In particular, for realE, the 2M eigenvalues
of T (E) occur in pairst , 1/t∗, unless|t | = 1. The numberν of pairs of eigenvalues on the
unit circle coincides with the number of bands with intersection inE [18].

Let us denote the eigenvalues ofT (E), E real, as

ta = e±λa+iθa a = 1, . . . ,M − ν tb = eiθb b = 1, . . . ,2ν
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and write the modulus of (3.1), with realE and z = eiϕ , in terms of them. After some
simple algebra

M−ν∏
a=1

(2 coshλa − 2 cos(θa − ϕ))
2ν∏
b=1

2 sin
(

1
2|θb − ϕ|

)
= |det(LN−1 · · ·L1)|−1| det[E −H(eiϕ)]|. (3.4)

By taking the logarithm of it and integrating the phaseϕ in [0, 2π) one obtains a remarkably
simple and interesting relation:

M−ν∑
a=1

λa(E) = −
N−1∑
j=1

log | detLj | + 1

2π

∫ 2π

0
dϕ log | det[E −H(eiϕ)]|. (3.5)

This formula is exact, and is valid for a single matrix. In the large-N limit and in a statistical
context, one would have the average behaviour〈λa〉 = Nγa, whereγa is independent ofN .
The right hand side of (3.5) would be evaluated by means of the ensemble andϕ-averaged
density of eigenvalues ofH(eiϕ). The equation would then provide a generalization to
M > 1 of the Thouless relation between the Lyapunov spectrum and the average eigenvalue
density of the Hamiltonian ensemble [10].

If instead we take in (3.1) the derivative in the variablez, by using the property
d(det(A+zI))/dz = det(A+zI) tr(A+zI)−1, we obtain equation (1.9). Also the derivative
in the right hand side can be computed, and gives the following final formula, whereG̃ij

are the blocks of sizeM ×M that partition the resolvent̃G(z,E) = [H(z)− E]−1:

Tr

(
1

T (E)− z
)
= −M

z
− Tr G̃1,N + 1

z2
Tr G̃N,1. (3.6)

The same formula follows from a stronger result, to be given in the next section.

4. The transfer matrix and the resolvent ofH(z)

A representation of the resolvent of the transfer matrix can be given in terms of the
resolvent of the non-Hermitian matrix,̃G(z,E) = [H(z)− E]−1. Note that [G̃(z, E)ij ]† =
G̃(1/z∗, E∗)ji . With the same procedure as in section 2, one obtains two identities(
zG̃1,1

G̃N,1

)
= T (E)

(
G̃1,1

(1/z)G̃N,1− I
) (

zG̃1,N − I
G̃N,N

)
= T (E)

(
G̃1,N

(1/z)G̃N,N

)
(4.1)

which join into the matrix relation(
zG̃1,N − I zG̃1,1

G̃N,N G̃N,1

)
= T (E)

(
G̃1,N G̃1,1

(1/z)G̃N,N (1/z)G̃N,1− I
)
. (4.2)

Simple steps lead to the final representation

1

T (E)− z =
( −G̃1,N (1/z)G̃1,1

−(1/z)G̃N,N (1/z2)G̃N,1− (1/z)I
)

(4.3)

which, by taking the trace, provides equation (3.6).
Note that the corner blocks of̃G can be expressed in closed form in terms of the corner

blocks ofG, by means of the Lippman–Schwinger equations

Gi,j = G̃i,j + 1

z
Gi,1G̃N,j + zGi,NG̃1,j . (4.4)
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5. The matrix T †T

The general results obtained so far for transfer matrices can also be applied to the matrix
Q(E) ≡ T (E)†T (E), which will be shown to be itself the transfer matrix of a Hamiltonian
built out ofH.

The matrixQ(E) has the feature of being Hermitian and positive, therefore with real
and positive eigenvalues. It is easy to show the validity of the property:

Q(E∗)σ2Q(E) = σ2. (5.1)

It follows that if t is an eigenvalue ofQ(E), then 1/t is an eigenvalue ofQ(E∗).
While considering the factorization

T (E)†T (E) = T1(E)
†6
†
1T2(E)

† · · ·6†N−1TN(E)
†TN(E)6N−1 · · ·61T1(E)

one notes the property thatTk(E)†, constructed withHk, coincides with−Tk(−E∗)
constructed with−Hk. This allows one to interpretQ(E) as the transfer matrix for the
solution of the equationK(E)9 = 0, with matrix

K(E) =

H1− E L1

L
†
1 H2− E

L
†
2 · · ·

LN−1

L
†
N−1 HN − E −I

−I E∗ −HN −L†N−1

−LN−1 E∗ −HN−1 −L†N−2

−LN−2

· · · −L†1
−L1 E∗ −H1



.

The corresponding non-Hermitian matrixK(E, z) entering the duality relation, is obtained
by placing the diagonal matricesz−1I and zI in the upper-right and lower-left corners
respectively. Then, the following equation holds:

det[T (E)†T (E)− z] = (−1)NM(−z)M | det(LN−1 · · ·L1)|−2 detK(E, z). (5.2)

A few remarks on the spectral properties ofK(E, z), which can be easily translated for the
matrixK(E), are useful:

(a)K(E, z)† = K(E∗, 1/z∗);
(b) The relation(

0 P

−P 0

)
K(E, z)

(
0 −P
P 0

)
= −K(E∗, 1/z)

holds, whereP is the block matrix with non-zero blocksPi,N−i+1 = I of size M,
i = 1, . . . , N ;
(c) for realz, because of remarks (a) and (b), the eigenvalues ofK(E, z) come in pairsx,
−x∗;
(d) the valuex = 0 does not belong to the spectrum ofK(E, z) if z is not in the real
positive axis, because the left-hand side in (5.2) cannot vanish.



8560 L Molinari

Let us concentrate on the case wherez = eiϕ andE is real; the matrixK(E, eiϕ) is
Hermitian, therefore its eigenvalues are real. By remark (c) the eigenvalues forϕ = 0, π
are symmetric; they also mark the extrema of the bands [18]: it follows thatK(E, eiϕ)

has as many positive as many negative eigenvalues and(−1)NM detK(E, eiϕ) > 0. The
eigenvalues ofQ(E) areM −µ positive pairs(ta, t−1

a ), with ta = eλa > 1, 2µ eigenvalues
being equal to unity. In terms of the eigenvalues ofQ(E) equation (5.2) reads

(
2 sin( 1

2ϕ)
)2µ

M−µ∏
a=1

(2 coshλa − 2 cosϕ) =
N−1∏
k=1

| detLk|−2(−1)NM detK(E, eiϕ). (5.3)

By taking the logarithm and integrating with respect toϕ, we end with a formula of Thouless
type:∑
a

λa(E) = −2
N−1∑
k=1

log | detLk| + 1

2π

∫ 2π

0
dϕ log[(−1)NM detK(E, eiϕ)]. (5.4)

For realz andE real or complex it is convenient, at least to simplify the notation, to convert
the matrixK(E, z) into another form; there is much freedom since only the determinant of
the matrix matters. Let us choose to left- and right-multiply the matrixK(E, z) by unitary
matrices to give

K′(E, z) ≡ 1√
2

(
I P

−iI iP

)
K(E, z) 1√

2

(−I iI

P iP

)

=
(H− ReE + U −iV − ImE

iV − ImE −H+ ReE + U
)

(5.5)

whereP is the same matrix of sizeNM defined after (5.2),U andV are block diagonal
matrices, each of theN diagonal blocks having sizeM. The only nonzero blocks are:
U1,1 = 1

2(z − z−1)I , V1,1 = 1
2(z + z−1)I andVN,N = −I . With this transformation, we

obtain the equivalent form of the duality relation:

det[T (E)†T (E)− z] = (−1)NM(−z)M | det(LN−1 · · ·L1)|−2 detK′(E, z). (5.6)

The matrixK′(E, z) is Hermitian for anyE in the complex plane and realz, and it has the
advantage of containing the matrixH in the diagonal blocks, albeit with opposite sign; a
similar structure appears in a paper by Efetov [24]. It has the following properties:

(a) K′(E, z)† = K′(E, z∗)

(b)

(
0 I

I 0

)
K′(E, z)

(
0 I

I 0

)
= −K′(E∗, 1/z)

(c)

(
I 0

0 −I
)
K′(E, z)

(
I 0

0 −I
)
= K′(E∗,−1/z).

6. Conclusions

In the present paper and in [18] I have considered a class of Hamiltonians characterized by
a block Jacobi structure which is shared by many interesting models of quantum disordered
transport. For a single Hamiltonian matrix I have obtained exact relations that allow one to
describe spectral properties of transfer matrices through properties of the Hamiltonian itself.
The identities involve general boundary conditions that imply a close connection between
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transfer matrices and non-Hermitian Hamiltonians, and make the statistical analysis less
involved, since the statistical ensemble is usually defined for the Hamiltonian.

Some equations, like (1.9), are suited for the supersymmetric technique. Two problems
arise, which have already been considered in the literature [25]: (1) the need for a
special formalism for the determination of the density of complex eigenvalues from the
knowledge of the average resolvent; (2) the ‘Hermitianization’ procedure for representing
ratios of determinants, which provide traces of resolvents by differentiation, as Gaussian
superintegrals. These problems are absent while considering the relation forT †T .
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